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and conventional superconducting c o i l s  has been made. 
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EXPERIMENTAL SIMULATION OF LARGE, HIGH FIELD, k 2  
SUPERCONDUCTING MAGNE;T OPERATION 

I. ABSTRACT 

Diversif ied work has been d i rec ted  toward a more thorough 

understanding of the  complex performance of superconducting 

co i l s .  Tests  with sample c o i l s  wound of 0.005-in. copper c lad 

Nb-25$ Z r  w i r e  showed very d i f f e r e n t  r e s u l t s  from those made 

previously with 0.010-in. wire co i l s .  The 0.005-in. Nb-25$ 

Z r  w i r e  was used for short sample s t a b i l i z a t i o n  experiments 

which w i l l  be continued i n  order  t o  c l a r i f y  severa l  newly 

observed phenomena. A comparison ca lcu la t ion  between s t ab i l i zed  

c o i l s  and conventional superconducting c o i l s  has  been made. 

Micro H a l l  Probe measurements have been. performed on Nb -Zr 
cyl inders  and sample co i l s .  Calculations concerning f l u x  

d i s t r ibu t ion  i n  hard superconductors under ad iaba t ic  f i e l d  

change were made. 

11. 0.005-in. Nb-Z5$ Z r  SAMPLE COIL TESTS 

K. R .  Efferson 

Quenching cha rac t e r i s t i c s  have been checked for c o i l s  7 . 3  and 7 . 3  
(Linde).  

copper cladding of 0.0005 i n .  r a d i a l  thickness,  formvar insulated.  Each 

has  an I D  of 4.125 in . ,  an OD of 5 i n . ,  and a length of 0.375 i n .  Coi l  

7 . 3  has 2549 turns  while 7 . 9  has  2551 tu rns .  

Both c o i l s  a r e  wound with 0.005-in. -dia Nb-Z5$ Zr wire, with 

C r i t i c a l  current  da t a  obtained with these  two c o i l s  show r e l a t i v e l y  

high sca t t e r ing .  The quenching c h a r a c t e r i s t i c s  of these  c o i l s  deviates  

appreciably from those previously obtained with a c o i l  having 2250 tu rns  
I wound with 10 m i l  Nb-25$ Zr wire. 

only, l a rge  t r a i n i n g  and sca t te r ing  was observed. Furthermore, t he  

quenching current  cha rac t e r i s t i c s  showed minima and maxima, both f o r  

'ORNL-TM 1083, March 23, 1965, p. 30. 

I n  the  l a t t e r  case, a t  zero f i e l d  
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aiding and opposing f i e l d s .  

sca t te r ing  and t r a i n i n g  zone was not r e s t r i c t e d  t o  zero f i e l d  and t h e  

quenching charac te r i s t ic  decreased monotonically with increasing f i e l d .  

These tes ts  w i l l  be continued and attempts w i l l  be made t o  reduce t h e  

sca t te r ing  by improving the  mechanical design. 

With t h e  c o i l s  7 . 3  and 7 . 3 ,  t h e  

III. STABILIZED 0.005-in. WIRE SHORT SAMPLE TESTS 

K. R. Efferson 

The sample i s  a O.OO5-in.-dia copper c lad Nb-25'$ Z r  wire, 10 i n .  

long, indium soldered t o  a copper s t r i p  0.003 i n .  th ick ,  3/16 in .  wide, 

and 14 i n .  long. Voltage contacts have been made t o  t h e  indium solder  

adjacent t o  the  superconducting w i r e .  The sample has  been mounted on a 

hold i n  form of a ha i rp in  which i s  1 i n .  w i d e  and 4.7 i n .  long. The 

p o t e n t i a l  across t h e  sample was p lo t ted  on t h e  X a x i s  and t h e  current 

on the Y ax is  of an X-Y recorder. Measurements were made by r a i s i n g  

t h e  current a t  a constant r a t e  i n  a f ixed  magnetic f i e l d  u n t i l  the  

sample went normal. Thereafter the  current was lowered a t  t h e  same 

r a t e .  

Figure 1 shows t y p i c a l  experimental r e s u l t s .  A t  zero f i e l d  (Fig.  l a )  

with increasing current a small p o t e n t i a l  appeared across t h e  sample 

u n t i l  

increase of the current t h e  p o t e n t i a l  rose a t  a higher r a t e .  When the  

current w a s  lowered t h e  voltage decreased approximately uniformly u n t i l  

a t  a lower s t a t e  a jump t o  t h e  i n i t i a l  voltage c h a r a c t e r i s t i c  occurred. 

When repeating t h i s  experiment the  upper c r i t i c a l  current showed an 

appreciable t ra in ing  e f f e c t ,  while t h e  lower c r i t i c a l  current remained 

near ly  constant. The extent of t h e  t r a i n i n g  i s  shown by comparing 

Fig.  l a  and lb, which represent t h e  f i r s t  and 15th of t h e  zero f i e l d  

tests.  The first p a r t  of t h e  I - V  c h a r a c t e r i s t i c s  corresponds t o  a 

res i s tance  of 8 pn, and t h e  second t o  approximately 32 pn. 
These r e s u l t s  a r e  t e n t a t i v e l y  in te rpre ted  as follows: 

t h e  poten t ia l  changed suddenly t o  a higher value. With a f u r t h e r  

I n i t i a l l y  

t h e  Nb-Zr wire i s  i n  superconducting s ta te  and approximately a t  t h e  

bath temperatures of 4.2'K. 
due t o  a current component flowing through indium solder  and copper. 

The measured p o t e n t i a l  i s  a voltage drop 
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When reaching the  quenching current of 55 amps (Fig.  la)  t h e  wire 

becomes normal and t h e  current  flows through t h e  copper s t r i p .  This 

t r a n s i t i o n  i s  very sharp. Further increase of t h e  current r a i s e s  t h e  

temperature of t h e  copper ribbon and of t h e  Nb-Zr wire. 

current  i s  decreased t o  55 amps t h e  ohmic heat ing of t h e  copper s t r i p  

maintains t h e  temperature a t  t o o  high a value t o  allow t h e  Nb-Zr  w i r e  

t o  re turn  t o  t h e  superconducting s t a t e .  

reduction occurs which indicates  t h a t  t he  w i r e  again became super- 

conduct ing . 

When t h e  

A t  43 amps a sudden p o t e n t i a l  

A d i f f e r e n t  performance has been observed at f ie lds  of around 

5 kilogauss (Fig.  IC). The I - V  diagram does not show any i r r e v e r s i b l e  

behavior. A cha rac t e r i s t i c  t race  is  exact ly  repeated when the  current  

i s  increased and decreased. A t  intermediate f i e l d s  ( 6  kG < H < 20 kG) 

t h e  loop c h a r a c t e r i s t i c  ( s imi la r  t o  Fig.  l a )  occurs again. 

f i e l d s  t h e  I - V  curve i s  reversible  and the  shape resembles Fig.  IC; 

however, without pronounced spikes. 

A t  higher 

These preliminary tests w i l l  be continued with ref ined experimental 

arrangements . 

I V .  COMPARISON CALCULATION BETWEEN STABILIZED 

AND CONVENTIONAL SUPERCONDUCTING COILS 

W. F. Gauster 

Soon a f t e r  t h e  phenomenon of degradation was observed, systematic 

e f f o r t s  were made t o  overcome t h i s  d i f f i c u l t y .  For example, R .  W. Boom 

invest igated superconducting co i l s  with copper secondary windings; 

'R. W. Boom, L. D. Roberts, and R. S.  Livingston, "Developments i n  
Superconductive Solenoids," High-Energy Instrumentation Conference, 
Geneva, J u l y  16-18, 1962. 
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Bet ter ton and Kneip3 reported t h a t  a solenoid wound with 0.006-in. 

Nb-25$ Z r  wire which was covered with an inconel mantle of 1 m i l  r a d i a l  

thickness  displayed short  sample performance. Later, copper c lad Nb-Zr 

and Nb-Ti wire which show reduced degradation e f f e c t  became commercially 

ava i lab le .  I n  a l l  these  cases the  use of non-superconducting metals i n  

c lose connection with t h e  superconducting winding material reduces f l u x  

jumps and improves appreciably t h e  quenching c h a r a c t e r i s t i c  of t he  

superconducting c o i l .  

Another observation was made by severa l  researchers:  Meta l lurg ica l  

treatment which improved t h e  short  sample c h a r a c t e r i s t i c  of t h e  super- 

conductor shows sometimes d e f i n i t e l y  derogative e f f e c t s  on t h e  c o i l  

performance ("overbred" superconductors) . 
disas t rous  f l u x  jumps and the  need f o r  a s t a b i l i z a t i o n  of t h e  w i r e  

performance becomes obvious. 

This kind of material d isp lays  

Recently decisive s t eps  i n  the  a r t  of bui lding s t a b i l i z e d  super- 
4 conducting co i l s  were described by T. H .  F i e l d  and Charles Laverick, 

and Z. J .  J .  Stekly and J .  L. Z a r . 5  

was t o  choose in ten t iona l ly  very low packing f a c t o r s .  

c o i l s  with small a-values  ( r a t i o  of outs ide t o  ins ide  diameter; not t o  be 

confused with Stekly and Zar's5 s t a b i l i t y  parameter a )  a decrease of t h e  

packing f a c t o r  h corresponds t o  only a small increase of t h e  length of 

t h e  superconducting winding mater ia l .  I n  o the r  cases,  however, it i s  

necessary t o  consider t h e  in t e r - r e l a t ion  between c o i l  geometry, t h e  shor t  

sample cha rac t e r i s t i c ,  and t h e  degradation i n  order t o  decide whether o r  

not a s t ab i l i zed  c o i l  might be superior  t o  a conventional superconducting 

c o i l  with a r e l a t i v e l y  high packing f a c t o r .  

I n  both cases t h e  e s s e n t i a l  point  

For superconducting 

O f  course, an important 

'5. 0. Betterton, Jr., G. D. Kneip, D. S. Eason, and J .  0. Scarbrough, 
"Size Effec t  and I n t e r s t i t i a l  Impuri t ies  i n  Nb3Zr Superconductors. 
Superconducting Solenoids with Metal Insu la t ion .  'I 

Editors ,  M. Tanenbaum and W. Wright, Proc. AIME, Feb. 1962, In te rsc ience  
Publ. , 1962. 

Superconductors, 

'T. H. F i e l d s  and Charles Laverick, Itsome Supermagnet Design 
Considerations," IEEE Transactions on Nuclear Science, NS-12, June 1965 
pp. 362-366. 

'Z. J. J .  Stekly and J .  L. Z a r ,  "Stable Superconducting Coils," IEEE 
Transactions on Nuclear Science, NS-12, June 1965, pp. 362-366. 
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advantage of s t ab i l i zed  c o i l s  i s  t h e  avoidance of an uncontrolled 

t r a n s i t i o n  t o  the  normal s t a t e  with t h e  r e su l t an t  l o s s  of magnetic 

f i e l d  and l i q u i d  helium. On the  o ther  hand, t he  increased c o i l  volume 

c a l l s  f o r  a l a rge  Dewar volume and l a rge r  l i qu id  helium losses  during 

t h e  i n i t i a l  cooling of t he  superconducting co i l .  

I n  t h e  following, one special  case s h a l l  be discussed which 
, 

i l l u s t r a t e s  w e l l  t he  above mentioned poin ts  of view. Stekly and Z a r b  

t e s t e d  a s t a b i l i z e d  c o i l  consisting of 14  "pancakes" with I D  = 5 in . ,  

OD = 17 in . ,  each pancake 0.5 i n .  wide. Due t o  1 3  interspaces  between 

t h e  pancakes, t he  t o t a l  c o i l  length, 2b, w a s  13  in.  The conductor was 

a copper s t r i p  0.040 in .  by 0.5 in .  cross sec t ion  with nine longi tudinal  

grooves i n t o  which nine s t rands of 0.010 i n .  Nb-25$1 Zr w i r e  were inser ted .  

This  superconducting w i r e  w a s  metal lurgical ly  "overbred" with a short  

sample quenching current of 85 t o  110 amps a t  40 kilogauss.  

A comparison of such a s t ab i l i zed  c o i l  with a conventional super- 

conducting c o i l  can be made eas ie r  if we assume t h a t  t he  14 pancakes are 

arranged without interspaces ,  i .e. ,  length 2b = 7 i n .  and @ = 2b/ID = 0.75 

(f3 should not be confused with the  parameter @ as introduced by Stek ly  

and Zar5 Eq. 14) .  
obtained. 

I n  t h i s  way a c o i l  with uniform current densi ty  i s  

S tek ly ' s  conductor arrangement with insu la t ion  between tu rns  has a 

packing f a c t o r  iL of about 0.03. 

wire with t h e  following shor t  sample quenching da ta  was used : 

Let us f i r s t  aasi~x? t h a t  a Y!?2-25$ Z r  * 

Table 1 

H (ki logauss)  10 15  20 25 30 35 40 45 50 55 60 65 70 
1 (amps) go 70 60 56.3 54 52 50 46.5 40 32 22 13 3.5 

A simple ca lcu la t ion  procedure y i e lds  f o r  t h i s  c o i l  (without consideration 

of t h e  degradation e f f e c t )  a quenching current  of around 52 amps (or 468 
amps i n  t h e  9-wire conductor) producing a t  t h e  ins ide  c o i l  surface 

HM = 35.2 kG, a t  t h e  c o i l  center Ho = 32.6 kG. 

See reference ( 5) and D r .  Z. J. J.  Stekly ' s  o r a l  communication. 6 

*Copper c lad Supercon wire. 
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A s  has been mentioned previously, S tek ly  and Z a r  employed Nb-25$ Zr 
wire with very high short  sample quenching cur ren ts .  

we will use twice t h e  quenching cur ren ts  of Table I. 

values a r e  obtained: 

For our ca lcu la t ion  

Thus t h e  following 

HM = 51.2 kG; Ho = 47.5 kG; I = 75.5 amps ( 9  I = 680 amps). 

This c o i l  has a volume f a c t o r  v = 2r((a2 - 1 ) B  = 93. With a packing 

f a c t o r  h = 0.5 t h e  same quant i ty  of superconducting material corresponds 

t o  a volume f a c t o r  

A volume optimized c o i l  with t h i s  volume f a c t o r  has a! = 1.48 and B = 0.75; 

i . e . ,  with I D  = 5 in. ,  OD = 7.4 in .  and length 2b = 3.75 in .  

degradation the w i r e  characterized by Table 1 y ie lds  

Without 

HM = 59.3 kG; Ho = 46.0 kG; IC = 23.2 amps. 

Based on tes ts  with similar superconducting co i l s ,  a c r i t i c a l  current of 

20 amps can be expected. This corresponds t o  HM = 52 kG and Ho = 40.3 kG. 

This volume optimized, uns tab i l ized  c o i l  generates i n  i t s  center  a 

f i e l d  which i s  15% smaller than t h a t  produced by t h e  s t a b i l i z e d  c o i l  with 

an equal quantity of superconducting mater ia l  ( d i f f e r e n t  short  'sample 

performance assumed) . 
c o i l  i s  much b e t t e r .  Furthermore, as mentioned previously,  current  

increase beyond t h e  c r i t i c a l  value of t he  s t a b i l i z e d  c o i l  has no d r a s t i c  

consequences. However, t h e  advantages of t he  small c o i l  and D e w a r  

volumes must a lso be considered. F ina l ly ,  it i s  obviously an advantage 

t o  operate with 20 instead of TOO amps. 

O f  course, t h e  f i e l d  homogeneity of t he  s t ab i l i zed  

This ca lcu la t ion  i l l u s t r a t e s  w e l l  t h e  advantages of a s t a b i l i z e d  

c o i l  design i n  t h i s  spec ia l  case. However, more and re f ined  inves t iga t ions  

are necessary t o  draw general  conclusions. 

V. A. MICRO HALL PROBE MEASUREMENTS ON A CYLINDER 

K. R.  Efferson 

F i e l d  d i s t r ibu t ions  i n  a cold worked Nb-2$ Zr rod are being inves t i -  

The sample i s  a 4-1/8-in. gated i n  longi tudinal  magnetic f i e l d s  a t  4.2OK. 

long and .26-in.-dia s o l i d  cyl inder  which has been s p l i t  i n t o  two equal 
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pieces  by cu t t ing  perpendicular t o  the  longi tudina l  ax is .  

i s  then mounted i n  such a way t h a t  t he  gap between t h e  two halves i s  

0.004 in .  

following sect ion)  through the  gap t o  measure t h e  magnetic f i e l d  a s  a 

func t ion  of pos i t ion .  The posi t ion of t h e  Probe i s  determined e l e c t r i c -  

a l l y  so t h a t  f i e l d  magnitude vs pos i t ion  can be p lo t t ed  on an X-Y 

recorder.  

The cyl inder  

A mechanical system moves a Micro Ha l l  probe ( s e e  t h e  

The f i e l d  i n  a cylinder without a gap is ,  of course, d i f f e ren t  

from t h a t  measured with our arrangement. 

(0.004 in . )  t o  rod diameter (0.26 i n . )  i s  very s m a l l ,  a f i e l d  disturbance 

can be expected only near t he  cylinder surface.  

of spec ia l  i n t e r e s t ,  and calculat ions a r e  being made t o  estimate t h e  

possible  influence of the  gap disturbance. The following measurement 

r e s u l t s  have not been corrected f o r  f r i n g e  e f f ec t s .  

Since t h e  r a t i o  of gap width 

This zone is ,  however, 

Some cha rac t e r i s t i c  f i e l d  measurements a r e  represented i n  F ig .  2 .  

By means of a b i f i l a r  hea te r  winding, t he  sample w a s  driven normal i n  

zero ex terna l  f i e l d ,  and after cooling of t he  sample t h e  ex terna l  f i e l d  

w a s  r a i sed  t o  5 kilogauss (F ig .  2a). 

t h e  sample was again heated and cooled so t h a t  the  f i e l d  of 5 kilogauss 

penetrated the  e n t i r e  sample. When increasing the  ex terna l  f i e l d  t o  

10 kilogauss,  curve b was obtained. F i n a l l y  curve c shows the  f l u x  

d i s t r i b u t i o n  with an ex terna l  f i e l d  of 14 ki logauss  a f t e r  f l u x  

penetrat ion a t  10 kilogauss.  

Keeping t h i s  ex terna l  f i e l d  constant 

A s  t o  be expected, f rom K i m ' s  formula 

a 
B t Bo 

t h e  l o c a l  current densi ty  J decreases with increasing B. The numerical 

values of t h e  current  densi ty  as calculated from these  measurements a r e  

i n  t h e  same order of magnitude found by o ther  authors.  

J =  

This f i e l d  scanning method i s  a l s o  convenient f o r  studying f l u x  

jumps i n  hard superconducting cylinders.  Figure 3 shows t h e  following 

example: F i r s t ,  t he  sample was heated and cooled i n  an ex te rna l  f i e l d  

of -1.5 kilogauss (curve a). After r a i s ing  t h e  ex te rna l  f i e l d  t o  +4 
kilogauss  t h e  f l u x  d i s t r ibu t ion  b was obtained. Lowering t h e  ex te rna l  

f i e l d  t o  zero yielded t h e  d i s t r ibu t ion  curve c. The d i s t r i b u t i o n  i s  



a 

fa r  from axisyrmnetric. Furthermore, when lowering t h e  ex terna l  f i e l d  

from +4 kilogauss t o  zero t h e  f i e l d  d i s t r i b u t i o n  UP t o  a c e r t a i n  radius  

remained unaffected. 

These f lux  d i s t r i b u t i o n  measurements w i l l  be continued. 

B. MICRO HALL PROBE MEASUREMENTS ON A SAMPL;E C O I L  

D. L. Coffey 

An experimental arrangement has been constructed which permits 

sweeping a Micro H a l l  Probe through a small (0.013 i n . )  s l i t  i n  t h e  

midplane of a superconducting c o i l .  The s l i t  dimension i s  approximately 

one wire diameter. 

shown i n  F ig .  4. 
a s m a l l  (0.04 mm2) H a l l  element t o  sweep through an a r c  passing r a d i a l l y  

through t h e  bore of the c o i l  (Fig.  4 ,  curve BC), two i n t e r n a l  sect ions 

(AB and CD) and a s m a l l  p a r t  of t h e  ex terna l  f i e l d  (AA'  and D D ' ) .  The 

sweep speed i s  adjustable  through a gear arrangement outside t h e  Dewar 

(range 30 min/sweep t o  1/2 min/sweep) . 

The c o i l  geometry and the  probe arrangement a r e  

This arrangement of t h e  probe posit ioning device allows 

A new type of Micro H a l l  Probe has been d e ~ e l o p e d . ~  The probe used 

here i s  t a i l o r e d  t o  the  requirements of t h i s  experiment and has the  

following s igni f icant  fea tures  : 

Material  Indium Arsenide 

Cover S i l i c o n  Monoxide 

Sensi t ive Area 0.04 mm2 

Tota l  Thickness 0.03 

S e n s i t i v i t y  5 x volt/amp gauss 

Impedance 2000 Ohm 

Linearity 

F i e l d  measurements have been made with t h e  H a l l  Probe connected 

5% of F u l l  Scale  t o  50 Kilogauss 

e i t h e r  d i r e c t l y  t o  an X-Y recorder or with an amplif ier  between t h e  

probe and t h e  recorder. 

7J. E. Simpkins, "Invest igat ions on t h e  P o s s i b i l i t y  of Using Indium 
Arsenide Films for Cryogenic H a l l  Probes,'' ORNL Thermonuclear Division 
Semiann. Prog. Rept. f o r  Period Ending A p r i l  30, 1965 (ORNL-3836). 
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Examinations t o  date have included only the  se l f  f i e l d s  generated 

by t h e  superconducting co i l .  

izpesed ex+,err,al f ie l i l s .  

Later experiments w i l l  be made with super- 

The midplane f i e l d  of a non-superconducting ( e  .g. copper) c o i l  with 

dimensions and tu rns  equal t o  tha t  of t h e  superconducting c o i l  i s  shown 

i n  Fig.  5 (curve a).  The effect  of a 0.013-in. gap between sect ions i s  

shown (curve b)  . This curve i s  t he  s t a r t i n g  point  f o r  the  ana lys i s  of 

t h e  e f f e c t s  of t h e  diamagnetic currents  i n  t h e  superconducting c o i l .  

I n  a superconducting c o i l  it can be expected t h a t  t h e  diamagnetic 

behavior of t h e  w i r e  w i l l  d i s t o r t  t h e  f i e l d .  A s  t he  current i s  increased, 

f l u x  penetrat ion of the  wire r e su l t s ,  and the  f i e l d  d i s t r ibu t ions  

approach more closely t h a t  of a non-superconducting c o i l .  This e f f e c t  

i s  apparent i n  Fig.  6.  
seen i n  t h e  shape of t h e  f i e l d  within the  bore of t he  c o i l .  A t  low 

cur ren ts  where t h e  diamagnetic f i e l d s  are important, a convex shape i s  

observed. A t  higher cur ren ts  the f i e l d  shape becomes concave as i n  a 

non-superconducting c o i l .  I n  order t o  study f i e l d  shape a t  low currents  

i n  more de t a i l  an addi t iona l  a m p l i f i e r  between t h e  Micro H a l l  Probe 

and the  recorder has been used. The f i e l d  shape recorded i s  shown i n  

Fig.  7. The c o i l  current  is 2 amperes and t h e  calculated maximum self 

f i e l d  i n  a corresponding non-superconducting c o i l  i s  2084 gauss. 

appreciable deviat ion from t h e  f i e l d  shape of t he  superconducting c o i l  

from t h a t  of t he  corresponding non-superconducting c o i l  can be seen. 

I n  a ( i n f i n i t e l y )  long superconducting co i l ,  t h e  coarse-grained average 

midplane f i e l d  i s  iden t i ca l  w i t h  t h a t  of a non-superconducting co i l .  

For  a short  superconducting coi l ,  however, t he  diamagnetic cur ren ts  

cause first a rapid drop i n  f i e l d  i n t e n s i t y  as one proceeds from the  

in s ide  toward t h e  outs ide surface. Thereaf ter  t h e  f i e l d  gradient  i s  

smaller than t h a t  i n  t h e  non-superconducting c o i l  (Fig.  7 ) .  
observation can be understood qua l i t a t ive ly  if one considers t h a t  t h e  

The influence of t h e  diamagnetic currents  i s  

An 

8 

This 

8 B. S. Chandrasekhar, W. F .  Gauster, J. K. Hulm, "Degradation Factor  and 
Diamagnetic Currents i n  Supermagnets, APL, Vol. 2, No. 11, pp. 228-9, 
June 1, 1963. 

- 
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diamagnetic currents a r e  more in tense  i n  the  ins ide  than i n  t h e  outs ide 

layers.8 Therefore the  r e tu rn  path of t he  diamagnetic f i e l d  

imposed on the  t ranspor t  current  f i e l d  produces a negative f i e l d  

component decreasing from t h e  ins ide  t o  the  outs ide layers .  

super- 

I n  Figs .  6 and 7, f i e l d  r ipp le s  a re  c l ea r ly  evident.  Their number 

i s  approximately one-half of t h e  number of layers .  

of t h e  winding end planes of a s imi la r ly  wound c o i l  shows t h a t  a l t e r n a t e  

layers  a r e  generally displaced one-half of one wire diameter. 

thorough invest igat ion of these  r ipp le  f i e l d s  i s  planned. 

Visual  examination 

A more 

Figure 8 shows the  remanent f i e l d s  with zero applied current  a f t e r  

successively energizing t h e  c o i l  t o  2 ,  4, 6, 10, 20, and 30 amps. 
Magnetic moment measurements on bundles of 0.010 i n .  Nb-25$1 Zr wires 9 

showed t h a t  a f i e l d  of about 5 kilogauss i s  necessary t o  reach maximum 

magnetization. This corresponds t o  the  observation on t h e  superconducting 

c o i l  t h a t  f o r  f i e l d s  of 5 kilogauss or more, t h e  remanent magnetization 

( i . e . ,  t h e  f i e l d  a f t e r  r a i s i n g  and lowering the  t r anspor t  current)  remains 

constant. I n  accordance with t h i s  r e s u l t ,  Fig.  8 shows t h a t  maximum 

remanent f i e l d s  a r e  trapped over a r a d i a l  dis tance where t h e  maximum 

t ranspor t  current f i e l d  has reached or exceeded about 5 ki logauss .  This 

seems t o  explain t h e  change of t h e  shape of t he  remanent f i e l d  from a 

nearly t r iangular  form t o  almost rectangular shape. 

The remanent f i e l d s  shown i n  F ig .  8 were obtained after reaching 

a maximum transport  current f i e l d  without occurrence of a normal t r a n s i -  

t i o n  (quenching). 

remanent f i e l d s  after quenching. The quenching currents  were between 

30 and 44 amps; i r r egu la r  t r a in ing  e f f e c t s  have been observed. 

of these  remanent f i e l d s  a re  shown i n  Fig.  -9 .  They p a r t l y  resemble 

remanent f i e l d s  obtained without quenching but  with much smaller maximum 

currents .  For instance,  curve a w a s  obtained after quenching with 

44.1 amps and is similar t o  a non-quenching d i s t r i b u t i o n  with approxi- 

mately 3 amps maximum current .  Figure gb represents  a remanent f i e l d  

after quenching with 33.7 amps. Only t h e  outs ide regions have trapped 

'D. C .  Hopkins and W. F. Gauster, "Magnetic Moment Measurements on Nb-Zr 

Other measurements were made t o  inves t iga te  t h e  

Several  

I t  Wires, ORNL Thermonuclear Division Semiann. Prog. Rept. f o r  Period 
Ending Oct. 31, 1963 (OmL-3564). 
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a remanent f i e l d .  F ina l ly  i n  Fig. 9 c ,  almost no remanent f i e l d  can 

be  seen. Remanent f i e l d s  i n  the mid-plane of a superconducting c o i l  

a r e ,  of course, not ind ica t ive  of t'ne t o t a l  s t a t e  of t he  c o i l .  

The physical  processes which lead  t o  t h e  d i f f e ren t  remanent f i e lds  

af ter  successive quenchings a re  r a the r  complicated. It is  intended t o  

.combine oscigraphic measurements with these f i e l d  scannings. 

gat ions of Aron," who studied the axial f i e l d s  of superconducting c o i l s .  

H e  discussed i n  d e t a i l  t h e  close cor re la t ion  t o  the  volume magnetization 

of the  superconducting windings. 

e f f ec t ive  t o o l  f o r  t he  measurement of t h e  f i n e  s t ruc tu re  of t he  f i e l d s  

produced by superconducting coi ls .  

b a l l i s t i c  methods. 

The Micro H a l l  Probe i n  the c o i l  mid-plane complement the  inves t i -  

The Micro H a l l  Probes a re  a very 

Similar  attempts have been made with 
11 

V I .  LARGE VOLUME COILS OF THE ORNL MAGNET LABORATORY 

J .  N.  Luton, Jr. 

A previous report'' described magnet c o i l s  i n  use i n  t h e  laboratory,  

and a l so  a l a rge  bore c o i l  (Cy-) now under construction. 

be  a power-optimized c o i l  of 8 th  order, producing a homogeneous f i e l d  of 

about 60 kG over a volume of nearly one cubic foot .  

e s s e n t i a l l y  as previously planned, except f o r  t h e  addi t ion of low current  

shunts around some pancakes t o  t a i l o r  t h e  current densi ty  d i s t r i b u t i o n  

more exactly.  This g rea t ly  improves the  calculated f i e l d  homogeneity, 

as can be seen by comparing Fig. 10 of t h i s  report  with Fig.  18 of t h e  

previously c i t e d  repor t .  

The C, c o i l  i s  t o  

The c o i l  i s  t o  be 

Construction has recent ly  begun on another c o i l  set a l s o  designed 

t o  produce a homogeneous f i e l d  over a la rge  volume. 

of t w o  i d e n t i c a l  c o i l s ,  D1 and D,, each with a bore of 1 3  in . ,  an outer  

diameter of 36 in . ,  and a length of 1 3  in .  

megawatts and a c o i l  spacing of 1-1/2 in . ,  t h e  assembly w i l l  produce a 

''Paul R. Aron, "Magnetization and a Superconducting Solenoid," 

This set w i l l  consis t  

A t  a power l e v e l  of 6-1/2 

UCRL-10854 (June 5 ,  1963). 

12Appendix I of Om-TM-1083. 

Taquet, personal comunication. 
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f i e l d  s t rength of 63 kG. 
s l i g h t l y  smaller than t h e  gap width which corresponds t o  t h e  "Helmholtz 

Condition" (zero condition f o r  t h e  second term i n  a Legendre polynomial 

development) . 
i n  t h e  mid-plane by sac r i f i c ing  some f i e l d  qua l i t y  along t h e  ax i s .  

can be  seen i n  F i g . 1 1 , t h e  f i e l d  s t rength  contours of t h e  D c o i l s  a r e  

not qu i t e  as impressive as those of Fig.  33; but  t h e  f i e l d  i s  homogeneous 

enough f o r  most of t h e  intended experiments. 

This d i s tance  was in t en t iona l ly  chosen 

This arrangement provides somewhat b e t t e r  f i e l d  homogeneity 

A s  

Since the current densi ty  i n  the  c o i l  windings i s  everywhere constant,  

t h e  winding design i s  simple and economical. Furthermore, t h e  assembly, 

consis t ing of a p a i r  of c o i l s  separated 

length,provides mid-plane access t o  t h e  

b i l i t y  of f i e l d  arrangement. F ina l ly ,  

ab le  t o  withstand operation with t h e  co 

by an a x i a l  gap of var iab le  

experimental volume and f l e x i -  

t h e  mechanical s t ruc tu re  w i l l  be 

1 curren ts  opposing. The 

r e su l t i ng  cusp configuration w i l l  provide high f i e l d  gradients ,  l a rge  

r a d i a l  f i e l d s ,  and, with proper c o i l  spacing, a l a rge  region of uniform 

f i e l d  gradient,  all of which are expected t o  prove valuable i n  f u t u r e  

experiments. 

If  one i s  concerned only with t h e  magnitude of t h e  f l u x  densi ty  

a t  any point ,  then Fig.  -11 descr ibes  t h e  f i e l d  of t h e  D c o i l s  adequately. 

However, f o r  some purposes t h e  relevant  parameter is  t h e  magnitude of t h e  

vector  difference between 

center)  i n  which case t h e  1 & 1 contours of Fig.  -112 descr ibe the  f i e l d  

i n  a more usefu l  way. 

and the  f i e l d  Eo ( t h e  f i e l d  a t  t h e  c o i l  
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AF'PEXfDIX A 

FIELD DISTRIBUTION I N  A HARD SUPERCONWCTOR 

W I T H  ADIABATIC FIELD CHANGE* 

W. F. Gauster and H.  A. U l l m a i e r  

I. INTRODUCTION 

If a longi tudina l  f i e l d  around a hard superconducting cyl inder  

i s  ad iaba t i ca l ly  ra ised,  f l u x  penetrates .  The dis tance &of t h e  

flux 

Wipf 

f r o n t  from t h e  surface i s  a t i m e  dependent funct ion Q(t) .  A s  

and Lubel l l  mention, t h e  speed of t h e  f l u x  f r o n t  i s  

B s tands f o r  t h e  f l u x  density.  - I  

The dis tance of a point  ins ide  t h e  wave f r o m t h e  wave f r o n t  i s  x. 

Of course, x < E .  The d i s t r ibu t ion  of any quantity,  say B, ins ide  - 
t h e  wave i s  i n  general  a funct ion of x and of t h e  t i m e  t 

B = B ( x , t ) .  

The change of f l u x  w i l l  induce an EMF. The maximum value of t h e  

e l e c t r i c  f i e l d  s t rength E occurs on the  surface of t h e  cylinder:  

2 n R E = - -  d@ 
d t  

Since E has t h e  same d i r ec t ion  as t h e  shielding current densi ty  J ,  

an energy pe r  u n i t  volume of 

' S .  L. Wipf and M. S. Lubell, Phys. Le t te rs ,  - 16, lo3  (May 15, 1965). 

*Research sponsored by t h e  U. S. Atomic Energy Commission under contract  
with the  Union Carbide Corporation. 
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is  diss ipated.  

i s  neglected. This leads t o  a temperature r ise dT. Under 

ad iaba t ic  conditions 

The energy necessary t o  acce lera te  t h e  e l ec t rons  

( 3) - de = c(T, B) dT 2 r r r  

c(T, B) is  the  spec i f i c  heat i n  t he  superconducting state a t  the  

temperature T and the  f i e l d  B. 

11. FIELD DISTRIBUTION I N  A SEMI-INFINITE SLAB 

F i r s t  we consider a hard superconducting semi- inf ini te  slab 

( r  3 m) with zero i n i t i a l  conditions ( t h e  whole material i n  "v i rg in  

state," i.e.,  B = 0 and T = To). The following s t ep  by s t e p  method 

could be used f o r  determining the  d i s t r ibu t ions  of B, T and J. 

designations i n  F i g .  1 are self-explanatory.  For the  wave f r o n t  

The 

(4)  
aB ax = Po J(T, B) = Po J (To, 0 )  = Po Jbo 

is  constant.  Therefore ( f o r  s u f f i c i e n t l y  small s) 

B10 = Bel = B = --- = poS Jbo 
32 

The f l u x  increase per  u n i t  length ( i n  t h e  z di rec t ion)  i s  

3 
2 B1O 

- - - - - - 932 - --- - - 

From Eq. (3) 
- - - Jbo 

To + qTJ $10 T10 - TZ1 = T32 - --- - 
and theref ore  

= J~~ - - --- = J ( T ~ ~ ,  B ~ ~ )  
32 JZ1 = J 

( 5 )  
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F i n a l l y  

. 

BZO = B3-,. = Bh2 = --- = BZ1 + vo s JZ1 (9) 

The succeeding values of f l u x  increase t o  be subs t i tu ted  i n  

Eq. (3)  can be e a s i l y  determined ( see  Eq. 10). 

procedure which can be continued i n  a similar way shows t h a t  f o r  .the 

This ca lcu la t ion  

case of a semi-infinite s l ab  t h e  d i s t r ibu t ions  of B, T ,  and J ins ide  

t h e  wave move along with t h e  wave; t h a t  is, B, T,  and J a r e  funct ions 

of x only. 

It would be possible  t o  write a computer code based on Eq. (4 )  

t o  (9) .  

expressed i n  a closed form if we replace t h e  general  expression c(T,B) 

i n  Eq. ( 3) by Eq. (14). 

I n  t h e  spec ia l  case of a s lab  t h e  d i s t r ibu t ions  can be 

Then we can proceed as follows: 

T T -  - - - - - 2 2 - -  LL- TI--- A n ~ m i C < ~ . * n  The f l . ~  i n r r e i s e  
I V L .  L " L I U I U C - *  "*I& W U " L  ~ " Y - V - " " '  $ k J  %k+l -  

- @ i s  t h e  difference between t h e  a reas  bounded by the  'k+l, ,4 k , i  

curve segments k + 1 and k. Therefore ( see Fig .  1) , 

'k+l, 

Going t o  t h e  l i m i t  s += dx, Eqs. (3) ( f o r  t h e  case of a semi- 

i n f i n i t e  slab, 2 II R must be omitted) and (10) y ie ld  

J d @  = J B dx 

Therefore f o r  any dis tance x inside t h e  wave t h e  r e l a t i o n  
rn 

i s  val id .  

slab i s  t h e  f l u x  jump condition given by Wipf and Lubell. 

This equation applied t o  t h e  surface of t h e  superconducting 
1 

'S. L. Wipf and M. S. Lubell, Phys. Letters, 16, 103 (May 15, 1965). 
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. 

I n  order t o  determine t h e  funct ions B(x), T(x) and J(x), 

we make t h e  following assumptions: 

(a) I n  the  range of i n t e r e s t  t he  c r i t i c a l  temperature T c  

can be approximated by 

Tc = T,, - bB 

is  the c r i t i c a l  temperature a t  B = 0 

The spec i f i c  hea t  c f o r  Nb-Zr can be approximated by 

T C O  

(b) 

c = kT 4 

For  Nb-25$ Z r ,  k = 4.65 j ou le  m-3 (%)-5 (see Ref .2) .  

( c )  Experiments show t h a t  

T - T  * 

f ( B )  
C 

J ( T >  B, = Jbo 
T - To 

C 

i s  a good approximation. 

f ( B )  is  a constant if t h e  model of C.  P. Bean and 

H. London is  used. For  K i m '  s model 

BO 
T - T  

0 J = Jbo 
Bo + B Tc - To 

( d )  The ex terna l  f i e l d  is ra i sed  fast enough t o  be almost ad iaba t ic ,  

bu t  slow compared with t h e  electromagnetic d i f fus ion  t i m e .  

Considering Eq. ( l3 ) ,  (14), (15)  w e  ob ta in  

3 

- T  - b B  dB 
( 17) - 1 TCO 0 dx = 

' o  Jbo Tco - bB - ( 2  BL k CI, + T o ) l / 5  f (B)  

W e  in tegra ted  t h i s  equation f o r  various forms of f ( B )  and T 

(Fig.  2 ) .  

wave f r o n t  (Fig. 2a) r e s u l t s .  

= 4.2% 
0 

If the  ex terna l  f i e l d  is very slowly ra i sed ,  t h e  isothermal 

I n  F ig .  3 isothermal ( so l id  l i n e s )  and 

2A. E l  Bindari  and M. M. Litvak, J.  A p p l .  Phys. - 34, 2913 (1963). 
%'. B. K i m  C. F .  Hempstead, and A. R. S tmad ,  Phys. Rev. Letters a, 
794 (19641 

Y 
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ad iaba t i c  (dot ted  l i n e s )  flux d i s t r ibu t ions  are compared f o r  

d i f f e r e n t  pos i t ions  G, of the  wave f r o n t  . ,’ 

Equation (12)  holds s t r i c t l y  only if t h e  wave f r o n t  does not h i t  

a boundary before  t h e  f l u x  jump condition has  been reached. 

T = T t h e  current  dens i ty  J becomes zero and therefore  approaches 

.%. 

For 

C’ 

Keeping t h i s  f a c t  i n  mind the  following condition f o r  t h e  temperature 

dependence of BFJ, t h e  ex te rna l  f lux  dens i ty  when f l u x  jump occurs i s  

obtained from Eq. (17). 

This  dependence is  represented i n  F ig .  4. 

Experiments show t h a t  t he  values calculated by Eq.  (18) are 

This devia t ion  is  mainly about 15% higher  than the measured values. 

due t o  assumption (b) where t h e  s p e c i f i c  hea t  func t ion  i s  approximated 

by Eq. (14) which holds f o r  B = 0. 

ma te r i a l s  and low f ie lds ,  c(T, B) f a l l s  below c(T, 0) a t  higher  

temperatures ) . 

But it can be shown t h a t  f o r  high K 

4 Another possible explanation f o r  t he  high ca lcu la ted  

BFJ values i s  the  neglect of the normal eddy currents ,  but  we estimate 

t h a t  these  lo s ses  are small. Furthermore, when the  ex terna l  f i e l d  H 

approaches BFJ/p0, t he  ve loc i ty  - becomes so l a r g e  t h a t  t h e  assumption 
d .: 
d t  

(d) i s  no longer va l id .  However, a very l a r g e  increase of -A d i  i s  caused d t  

by a very s m a l l  increase of H,  so t h a t  t he  value of BFT i s  not 

appreciably influenced. 

‘I,. Vieland and A. W. Wicklund (Unpublished). 
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111. FIELD DISTRIBUTIONS I N  CYLINDERS 

For  superconducting cyl inders  t he  d i s t r i b u t i o n s  of q u a n t i t i e s  

B, T, and J are not funct ions of x alone and, therefore ,  do not move 

undis tor ted with the  f l u x  wave. 

i n t eg ra t ion  method similar t o  t h a t  described previously f o r  t h e  

semi- inf ini te  s lab.  

By means of a computer program, f l u x  densi ty  d i s t r i b u t i o n s  shown 

i n  Fig.  5 have been determined. The assumptions are t h e  same 

as f o r  F ig .  2c. 

We have developed a numerical 

It is based on Eqs. ( 3 )  and (13)  t o  (16). 

If t h e  wave reaches the  axis of a s o l i d  on t h e  inner surface 

of a hollow cylinder,  t h e  computation procedure must be modified. 

Small a r b i t r a r y  s t eps  of B on the  inner  boundary are assumed which 

l ead  t o  e, T, andJ values i n  a similar way as described above. 

i s  also possible  t o  consider i n i t i a l l y  trapped f i e l d s .  

the flux d i s t r ibu t ion  i n  a hollow cyl inder  w i t h  previously trapped f lux .  

Figure 6b represents  t h e  case of i n i t i a l l y  trapped f l u x .  

hatched areas indica te  the ad iaba t ic  f l u x  changes. Addit ional  computer 

r e s u l t s  compared with experimental da t a  w i l l  be puDlished a t  another 

t i m e  . 

It 

Figure 6a shows 

The cross-  

After f in i sh ing  th i s  manuscript, we became aware of unpublished 

work by P. S. Swartz and C .  P. Bean which d iscusses  other aspec ts  of 

t h i s  problem. 

c 

Y 
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